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Abstract—A mathematical model is presented which may be used to predict the temperature at any point
in a multilayer chimney under the unsteady state conditions encountered with variable inlet temperature
and mass flow rate of the chimney gases, and variable ambient temperature. The model satisfactorily
predicts the temperatures measured in a three-layer experimental chimney over both the' heating gnd
cooling periods of operation. In particular, the model correctly determines the period of time for yvh1ch
any portion of the inner chimney liner is below the acid and water dewpoint temperatures c_)f the ch1mr}ey
gases. By ensuring that this time is minimized by modifications in domestic chimney design and bo!ler
operating conditions, the tendency for acid and water condensation and the attendant chimney corrosion

can be substantially reduced.

NOMENCLATURE
B, Biot number;
C, mass specific heat;
F,, function, m(t/B)/m(t);
F,, function, [r(t)/m(0)]~%2;
F3,  function, [r(t)/m(0)]*°8;
F,, function, ¢,(z 1);
h, heat-transfer coefficient;
K, thermal conductivity;
L, height of chimney;
m, mass flow rate of chimney gases;
m, counter for radial position within a solid
layer;
M, total number of radial increments within a
solid layer;
n, counter for time steps;
r, radial distance;
R, dimensionless radial distance;
t, time;
u, gas velocity in chimney;
w, dummy variable;
¥, dimensionless distance from base of
chimney (= ¢z);
z, distance from base of chimney.
Greek symbols
o, thermal diffusivity;
B, constant defined as «,/r3;
7, function of increment lengths in the radial
position—time plane;
£, constant defined as 2h,(0)/r,p,C,U(0);
1, the product B, F3(i, n+4);
0, temperature;
A ratio of thermal diffusivities (o/a,);
D density;
T, dimensionless time = B(t —tp);
®, dimensionless temperature = 6/8,(0);

v, ratio of dimensionless radius and

dimensionless radial step length.
Subscripts

a, ambient conditions (cooling air conditions
in experimental work);

A, cooling air;

C, cooling down portion of a complete cycle;

D, retarded (or delay);

£ on the first pass;

g, chimney gas;

H, heating up portion of a complete cycle;

i, at chimney inlet;

J (= 1,2 or 3) in jth solid layer;

0, at the outer solid layer—ambient air interface;

s, at the inner liner—chimney gas interface.
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1. INTRODUCTION

THE DEVELOPMENT of domestic and industrial boilers
with increased thermal efficiencies, and consequently
lower exhaust gas temperatures, has increased the
tendency for water and acid condensation to occur in
conventional chimneys. Such condensation gives rise
to chimney liner corrosion, the staining and gradual
disintegration of internal wall surfaces and cost and
inconvenience to the user. It is therefore essential to
identify and avoid boiler and chimney operating con-
ditions which might lead to condensation from the
exhaust gases. To the best of the authors’ knowledge,
no attempt has been made to put the subject of con-
densation in chimneys on a firm theoretical basis.

In a typical operating cycle in a domestic heating
system, the boiler is switched on from cold, the fuel
ignites and the exhaust gases enter the base of the
chimney. The temperature of the exhaust gases at the
chimney base increases rapidly with time until it attains
a steady value. The chimney temperature also increases
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with time, and will be below ‘the acid and water
dewpoint temperatures for a portion of the heating
period. Once sufficient heat has been supplied for
domestic requirements, the burner switches off, and the
mass flow of exhaust gases rapidly diminishes as does
the exhaust gas temperature. Cold air moving under
natural draught then replaces the exhaust gas and its
mass flow rate decreases with time as the chimney
cools, The chimney temperature will, for part of the
cooling period, be below the acid and water dewpoint
temperatures. Once a certain time has elapsed, the
burner is automatically switched on and so the cycle
is repeated. After several cycles have been completed
the c¢veling pattern becomes steady and each cycle is
identical.

The mathematical model described in this paper
predicts the temperature of the inside of a multilayer
chimney at any position during operation. The model
essentially solves the unsteady state heat-conduction
equation within the chimney wall and this is coupled
to a differential equation describing the energy balance
for gas flowing up the chimney. The resulting equations
have been solved numerically. The computer output
is both in the form of numerical data and also
graphical, whereby the temperatures of the inner
chimney liner are plotted for heating, cooling and
cycling conditions. A knowledge of the acid and water
dewpoint temperatures will then determine the length
of time the chimney is subject to acid and water con-
densation for any of these conditions. No attempt has
been made in this paper to estimate amounts of fluid
deposited on the chimney liner.

The ultimate aim of the mathematical model is to
predict actual chimney behaviour. As a first step, the
model was set up to predict the behaviour of an
experimental chimney and the practical measurements
served 1o test the accuracy of the model. In this paper
the model predictions have been compared with the
experimental measurements made in the chimney.

2. THE EXPERIMENTAL CHIMNEY AND
MEASUREMENTS MADE

Experimental tests were carried out by DOBETA
{Domestic Oil Burning Equipment Testing Associ-
ation) on the chimney shown in Fig. 1. Measurements
were carried out over 6 ft of the 4-in 1.D. steel chimney
which was attached to a boiler fired on kerosene fuel.
Cooling air was forced through a surrounding jacket
of 7-in dia in an attempt to simulate the most severe
conditions likely to be encountered in practice with
high winds. These are the conditions which produce
greatest condensation.

The purpose of the experimental work was to deter-
mine the input quantities required by the mathematical
model and to compare the measured gas and chimney
temperatures taken over a complete cycle with the
corresponding predictions.

The following quantities were measured:

(i) The mass flow rate of fuel.

(i} The concentration of carbon dioxide which
determined the mass flow rate of air.
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Fi1G. 1. Diagram of experimental chimney rig.

(ii1) The velocity of the residual air flow during the
cooling period.

{(iv) The gas temperatures at the inlet and outlet
of the test section, which were recorded con-
tinuously.

{v} The temperature of the inner liner at the top
of the test section, which was recorded con-
tinuously.

{vi) Inner liner temperatures | Measured at

positions shown

{vii) Outer liner temperatures > by x in Fig. 1

I and recorded at

(viii) Cooling air temperatures I 20-s intervals.

A typical measured inlet gas temperature vs time
curve is shown in Fig. 2{a). This is taken over a
complete cycle, i.e. one heating period and one cooling
period. Figure 2(b) shows the corresponding curve of
total mass flow rate of gas through the chimney vs
time. Both these sets of information are required as
input data for the mathematical model.

3. A MATHEMATICAL MODEL TO PREDICT THE
EXPERIMENTAL CHIMNEY BEHAVIOUR
3.1. Physical model and assumptions
Figure 3 shows a cross section of a typical cylindrical
three layer chimney consisting of a thin metal inner
liner, a layer of insulating material and an outer layer.
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F1G. 2. Mass flow rate and temperature of flue gases vs time
for Test A (firing rate 57.7 g/min, 12.6%, CO,).

The hot exhaust gases pass through the chimney trans-
ferring heat to the inner liner surface by convection in
the heating period. An energy balance equation is
required for the gas flowing up the chimney. Heat is
conducted through the inner liner, the insulation and
the outer layer which, in practice, loses heat by con-
vection and radiation to the surroundings. The un-
steady state heat-conduction equation applies to each
of the three layers.

For the chimney under test, several physical assump-
tions are used in order to simplify the formulation and
solution of the mathematical model. These are:

(i) As a first approximation, the effect of conden-
sation on heat transfer is assumed to be negligible, so
that the variation of liner temperature can be predicted
without consideration of any mass transfer.

|
|
{
I
. }
o| @
S [=4
£l B ] 8 |
@ 5 >
sl & 3 1% '
E| 5 2 |g 8 '
| © - w ‘
A :
rg ——=!
t.
2 z

f

T
Base of flue

817

(i) As it is required to study the worst conditions
that can occur (from the condensation aspect), the
entire chimney structure is assumed to be initially at
the ambient air temperature for the first heating period,
and forced convective cooling conditions are assumed
for the outer face.

(iii) A linear heat loss law is assumed at the outer
face of the chimney. In the case of the experimental
chimney this will be true because radiation is negligible
compared with convection.

(iv) On the basis of preliminary order of magnitude
calculations, conduction in the z direction (i.e. along
the chimney height) is neglected in comparison with
radial conduction for both the chimney structure and
the chimney gas.

{v) Thermal properties of the solid layers are assumed
independent of temperature.

(vi) The gas temperature is assumed uniform in any
cross-section due to turbulent flow conditions. For the
test chimney a typical entry Reynolds number is of the
order of 6000.

(vii) The mass flow rate of the gas is assumed to be
independent of temperature although it may vary with
time, particularly in a cooling period.

(viii) For the purposes of simplification, the specific
heat and density of the chimney gases are taken to be
constant.

3.2. Mathematical formulation of the problem
3.2.1. Differential equations for conduction in the
chimney wall. The unsteady state equation applies in

each layer:
00, 10 {rdf;

J_<x ‘<r_a—l> forj=1,2,3 (1)
T

b ror
where j = 1 corresponds to the inner layer, j = 2 to the
insulation and j = 3 to the outer layer. In the equation
0 is temperature, « is thermal diffusivity, ¢ is time and
r is radial position.

3.2.2. Boundary conditions for the solid. The bound-
ary conditions on the 6; are:
66,

=Ky = hy(00,—02) at r=r, )

Armbient air

Outer layer

F1G. 3. Cross-section of a typical cylindrical three-dimensional chimney.
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Oj-1 =0 3)
(’,\701'71 ("’0] at F=1r; forj:2,3
Kj 17T = i A
or ér 0
and

o0

K35 = dg(05—0,) at = 1. (5)
cr

Equations (3) and (4) express the continuity of tem-
perature and of heat flux at a solid interface on the
assumption of perfect thermal contact. In these equa-
tions 6, is the exhaust gas temperature, 6, is the
ambient air temperature, K is the thermal conductivity,
and h,(t) and hy are the heat-transfer coefficients for
the interfaces between the flue gas and liner and the
outer layer and ambient air, respectively.

3.2.3. Differential equation for the flue (exhaust) gas.
Assuming incompressible flow and constant heat
capacity, the thermal energy balance for the gas can
be written as:

_ 2

P C ':[gg'"(()l)r:n} (6)
qg~gq

where z is distance measured from the base of the
chimney, p, is the density of gas and C, is its heat
capacity per unit mass. u is the gas velocity. which at
any instant is equal to

mt)

nrip,
where m is the mass flow rate of the gas.

Assuming incompressible flow, the continuity equa-
tion for the gas is:

=0 (N

This shows that the mass flow rate within the chimney
is independent of position within the chimney. Hence
# may be taken as the inlet mass flow rate, i.e.

m(t) = nl1). (8)

The boundary condition on 0, is:

0, = 0i(t) at z=0. (9)
Initial conditions - The initial condition for the solid
temperature is:

0, =0, =0, =0, (10)

forzt)<z< L,ry<r<riandt20,0n the assump-
tion that the whole of the chimney structure is initially
at the ambient air temperature. This condition is a
statement of the fact that the solid temperature cannot
change until gas comes into contact with it, owing to
the assumed lack of conduction in the z direction.
z,(t) gives the position of the gas front on its first travel
through the chimney.
The initial condition for the gas is:

0,=040)at z=0fort = 0. (11)

3.3. Change to dimensionless variables
The equations to be solved can be simplified by the
following change of variables:

Dimensionless distance from the chimney base

cv o=z {12)
Dimensionless time = 1t = i1 ~1p) i3
{}
Dimensionless temperature = ¢ = (f('()) {14
Dimensionless radial distance = R = (15)
I‘-l

where 1, is the time taken by the fluid at height z at
time ¢ to travel from the chimney entrance to height z,
and is given by the equation:

[Tt 1 Sweg
= uwydw = - - W) dw (16)
Jw=iotp 7'[]“"/}51& W iy
and
2h,(0
om0 0
& /)Lj Cq ”(O}
and
f=airi (18)

With these transformations, the differential equations
to be solved (which are derived in Appendix 1) are as
follows:

Equation (1) becomes:

. o0 3
('(b.l Lyt (R (19j

ot R CR\

for R; <K R<Rjy1 j=1,2.3, where

T m(Tip)
Aj = /1‘11‘ 'dnd Fl(_\', T) = ;;(—[)—v

Equation (6) for the gas becomes:

Da _

20
y 20

—Fy(v. 0y —d1)r=r.]

where

assuming A, o [i(1)]°#, (Dittius-Boelter equation [ 1 }).
The corresponding dimensionless boundary and
initial conditions are:

i:(/;% = —F300,0 By (py—pryat R= R, (21
B
where
m(t) |8 .
Fa{v.1) = —Q and B, = [h,(0)rs}/K,
m{0)
ij -1 ‘/’j 7 (22
O d¢; r at R=R;for j=12.3
AR T WiaR {23)
where w; = Kj;/K;.,
Oy _ .
R —Bo(¢s— ¢, at R =1 {24
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where By = }IQTQJ'K:;, and

b1=¢: =¢3=¢a(0) (25)
att=0for R, <R<land0<y<eL

¢y = ¢it) = 0,(1)/0:(0) at y = 0. (26)

It should be noted that B, and B, are Biot numbers
for the inner and outer surfaces of the chimney, both
based on the outer radius.

4. SOLUTION OF THE EQUATIONS
The equations are solved numerically by finite differ-
ence methods. A finite difference scheme for solving
equations similar in form to those occurring in the
present paper has been reported by Handley and

Hegegs [2].

4.1. Gas temperature on the first pass

As a first step in the numerical solution it is necessary
to know the gas and solid temperatures at 7 =90.
Neglecting heat transfer from the chimney structure to
(or from) the surrounding air (whose temperature
varies) in the early stages, it can be assumed that the
gas front encounters a liner temperature of §,(0) at
each height, ie.

(B)r=r, = 0.(0) at z=z/1).
Now,

Zs(t) = J‘W u(w)dw = - i ‘fw:tm(w)dw

w=0 T 1Pg Jw=0

ie. t =ty at the gas front.
This can be written in dimensionless form as:

(@1)r=r, = P0) at T =0.

therefore, at t = 0, equation (20) can be written:

d
a;(%)::o = F3(3, [ $4(0) = (@g).=0]-

4.3. The finite difference equations

819

. Air - solid

intertace Gas- solid

interface

F1G. 4. Three-dimensional finite-difference grid system.

Integrating and using the condition that (¢,),.o = 1
at y =0 gives:

(¢9)r=0 = (ba{o) + [1 _d)a(o)] exp[ - J\

y=

4]
@0

The corresponding solid temperatures are given by
equation (25).

4.2. The finite difference grid

The solid temperature can be represented by a three
dimensional grid, and the gas temperature by a two
dimensional grid as shown in Fig. 4. The general
temperatures at the grid points are:

P4y, 7) = dyliAy, nA7)
PUR, y, 1) = $1{(Ry +my Ay R), iy, nAt]
P2(R, y, 1) = ¢2[(Ro+my Ay R), iAy, nAz]
?3(R, y, 1) = ¢3[(Rs+m3A3R), idy, nAt].

4.3.1. For the gas. The finite difference form of equation (20) is:

1 Fy(i-%,n+1 Fali—%, n+1
[g;_(, _..Z_(.l_.%__’i_)j]é)g(i, n+1) —A%fil osli,n+1)
1 Fyfi—-4,n+1)], Fali~4,n+1
=[A_y._iw..z._]¢g(z—1,n+1)+——('«—§l-«l¢s(i—1,n+1) (28)

where ¢(i,n+1) = ¢,(0, i, n+ 1} is the inner liner temperature.
432 Within the jth solid layer (j = 1,2, 3). Equation (19) can be expressed in the Crank-Nicholson [3] six-
point implicit form about the point [(R;+m;A;R), iAy, (n+4)A1] as:

, 1 . 1
(1 ‘+‘2’Pj)¢[(m]’ L, n+ 1)— ?}[1 +——2([//J+ml)](ﬁj(m"+ 1, Ln+ 1}—")’1[}. ~W]¢J(m‘l— 1, i, n+ l)
, 1 1
( 271)‘1’1(”"1’ kL n) +7;[1 + 2(!//,"1"’7’1])] d-’;(mf*' L3 ﬂ)+ %[1 2(1{1;+mj)]¢j(mi¥ L4 n) (29}

for 1 <m;< M;_,

where Mj = (Rj+g —R)' //AJR
;= A F (i n+3)At/2(A; R)?
Wy = Ri/A;R.
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The derivation of the finite difference forms of the boundary conditions, which are given below, can be found

in Appendix 2.

4.3.3. At the interface between the (j— 1)th and jih solids {j ~ 2, 3). The continuity of temperature conditions

[equation (22)] become:

¢ 1My iond 1) = g0 L n+ 1) {304
d; (MLm= $0, i n) 3
and the continuity of flux condition [equation (23)] can be expressed for (n+4}A7 as:
(1427, 1) w142
" : it il A0, i n+1)
Vi) T A R [ 1 s )A-R
" 2(1/’j~x+M.i-~1)J o 'I( 2y
_2w¢,(l.Ln+1) 20, (M- - L iLa+ 1)
! I '
[—— AR 14— A (R
( 2%‘) ! 201+ M, ﬂ‘ o
(1=2y,-1) 051 = 27)
- e i L PO
v e e AR 1 )A»R
! l“ 2(‘/’,;:+1‘4;4—1}AJ o j( 24/
/2cu}~¢>v;(i. i, n) ) 2, (M —Lin . 32
l—-— AR | T4 - A R
(‘ 21//1) 1 2(!//,'-1*}‘!\’1‘,%1) i
434, At the gas-liner interface. Equation (21) can be written in finite difference form as:
2 , . {(1+2yy) . ; .
-——1-—-————-(p1(1,1,a+1}~ —““*—‘—I‘—"“"“"“—*}‘El’] ¢ lin+ N+ 2ng,li,n+
—2p4(1, 1, 127
= il i) —~ ( 1) =25 ¢l 0y = 2nd,4ii {33

a 1
(155, Jm

1
I I
i1 ( 2$1>A1 R

where ¢ (0,4, n+ 1) and ¢,(0,i n) have been replaced by ¢din+1) and ¢yli,n) respectively and where

0= Fs(i,n+4)B,.

4.3.5. At the outer layer-air interface. The boundary condition [equation (24)] can be replaced in finitc

difference form by:

{(1+2y3)

+2Bg| dafiMs. iint 1) ~=

23 (M~ 1, n+1)

73

i
I+ AR
*2(1//3“43)} 3

(1-273)

= *—ZBO ¢3(M3,i, i’l)+

73

1
Tt M) |A3 R
where Fy(y, 1) = ¢,fz, 1)

Equations (28), (29), (32)-(34) are a set of
(M, +M,+M;+2) linear simultaneous equations in
the (M + M, + M3 +2) unknown temperatures at iAy.
(n+ 1)A1, These temperatures are:

Galmz i,n+1) 0<my < M;
Galmy, i,n+1), O0<my <M,
ymyin+1), 1<m <M,
P (Ln+1)

P li,n+1).

5. SOLUTION PROCEDURE
The gas and solid temperatures at any position and
time are calculated from the known temperatures at
=0 in the following way. For the first time step

|1+

i
20+ Ms)
205(M3—1,i,n)

3

+ 4By Fali.n+%) (34

' 1
1_11‘.._,.,,._..._“., A R
) 2(://3+M3}l :

T = Ar, equations (29), (32)-(34) are solved at the base
of the chimney i = 0. Then equations (28), (29)-(34)
are solved for each chimney height step for the first
time step. The procedure is then repeated for each
time step.

5.1. Input quantities required hy the computer proyram

The computer program simulates the three layer
experimental chimney (Fig. 1) and the following quan-
tities are required as input data for the program:

= mass flow rate of gases through the
chimney as a function of time for both
heating and cooling periods:

o= mlt)
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hy = inside heat-transfer coefficient for
both periods;

ho = outside heat-transfer coefficient;

Pg. Cys = density and specific heat of gases for

both periods (these are based on the
average inlet temperature for the
period under consideration);

K, K3, K3 = thermal conductivity of each of the
three chimney layers;

P1,P2,p3 = density of each layer;

C;,C,,C5 = specific heat of the three chimney
layers;

ri,r2,r3 = inner radius of each layer;

Fa = outer radius of chimney;

04 = cooling air temperature as a function

of time and chimney height;
and the curve of chimney inlet gas temperature vs time
for both heating and cooling periods.

In the test apparatus (Fig. 1) the mass flow rate was
kept constant for the heating period but varied during
the cooling period. Time is measured from the begin-
ning of the heating period and the solid and gas tem-
peratures are calculated for each time step until the
end of the heating period is reached. In the transition
period, i.e. in the change from heating to cooling, the
exhaust gases are being replaced by cooling air in
practice and the program assumes that the exhaust gas
is replaced instantaneously with air, which assumes the
temperature of the gas it replaces. The error in such
an assumption is very small since the time of the travel
of gases up the experimental chimney for the heating
period is

2
L_Lariey_ 64
u m
compared with the time step in the computer program
which was set at 30s.

The cooling period is calculated in exactly the same
way as a heating period. Time is measured afresh and
the solid and gas temperatures calculated at the end
of the heating period provide the starting values for
the cooling period. A new inlet flue gas transient, mass
flow rate of air [m(t)] and heat-transfer coefficient
[h,(1)], are required for the residual gas flow. It should
be observed that the grid will also change for the
cooling period—it will either stretch or contract at the
instant of changeover. Whilst Az—the actual chimney
height step—remains fixed, the dimensionless height
steps (Ay) during a heating and a cooling period are
given by:

Ayy = ey Az and Ayc = g Az respectively,
where

. = [ 2h,(0) :l and 6. = [ 2h,(0) ]

" Lrip,Cu0) I < 1119y Caul0) Jc
and where the subscripts H and C refer to the heating
and cooling periods respectively.

At the end of a cooling period, the program assumes
that the air is replaced instantaneously by the exhaust
gases for the new heating period, the exhaust gases

HMT Vol. 20, No. 8-—-B
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F1G. 5. (a) Section of the finite difference grid at the inter-

face between the (j— 1)th and jth solids. (b) Section of the

finite difference grid at the gas-liner interface. (¢) Section of

the finite difference grid at the interface between the outer
chimney layer and the ambient air.

taking on the temperatures of the air. In this case a
typical time taken for the cooling gases to pass through
the chimney is

L_Lwise_ g5,

u m
compared with a time step of At = 30s.

Thus the program can predict heating and cooling
periods and consequently complete cycles. It is the
behaviour of the chimney under cycling conditions
which is of particular interest to the heating engineer
and so the facility of plotting the inside chimney tem-
perature transients (for complete cycles) was incorpor-
ated into the program (see Fig. 6).

5.2. Accuracy of the computer solution

The stability of the equations is enhanced by their
implicit nature—in particular the use of the Crank—
Nicholson [3] finite difference formula.

The convergence and accuracy of the numerical
solution obviously depend on the values chosen for
Ay R, Ay R, AsR. Ay and At (see discussion by Handley
and Heggs [2]). The values chosen should give a
reasonable compromise between accuracy and com-
puting time.

Table 1 shows the effect on the calculated solid and
gas temperatures of varying the time step Az from 1 to
60s. Table 2 shows the effect on the calculated inner
liner temperature of varying the height step (Az) from
0.5 to 2ft, keeping At = 30s. These predictions apply
to the six feet test section of the experimental chimney
shown in Fig. 1.
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Table 1. Variation of predicted liner and gas temperatures
for different time steps

The height step Az = 1ft.

The predicted temperatures are those after 60s.

Inner liner base Gas temperature

At (s) temperature (°C) at chimney exit ("C}
1 25.05 32.99
5 25.04 3298
30 2496 3297
60 24.86

3295

Table 2. Variation of chimney
tiner temperature for two
different height steps
The time step At = 30s.
The predicted temperatures are
those after 60s.

Inside chimney liner

Az (ft at a height of 4§t {°C)
0.5 61.74
20 61.73

For the experimental chimney under consideration
in Fig. 1, all predicted temperatures for the above
time and height steps are within 0.5°C of each other
at corresponding heights and times.

All computer calculations were done on the
UNIVAC 1108 computer. A typical heating and cool-
ing cycle of 40min at At = 30s and Az = Ift took
7.8 s computing time, the number of different tempera-
ture predictions being 9600.

6. COMPARISON OF THEORETICAL PREDICTIONS
WITH EXPERIMENTAL VALUES

The quantities measured by DOBETA on the experi-
mental chimney (Section 2} permitted the calculation
of the input data for the program (Section 5.1). The
heat-transfer coefficients h, and hy were calculated
from the standard formula of Dittius—Boelter [1],
averaged over the temperature range involved. In the

case of hy, the convective flow rates in the test apparatus
were so great that the radiative contribution could be
neglected by comparison. The values of C, and p, were
the average of their values evaluated at the initial and
ultimate inlet gas temperatures in any period. The
thermal properties of all the three layers were obtained
from tables with the exception of the thermal conduc-
tivity of vermiculite which was obtained from steady
state measurements on the apparatus. In the cooling
period, M and consequently ki, were calculated from
measurements of the residual gas flow velocity.

Six separate tests were carried out by DOBETA.
For three tests (A, B and C) the boiler was switched on
for about 30min so that temperatures were steady
before cooling down. A different firing rate and quan-
tity of excess air was used in each case. These three
tests are tabulated in Table 3.

Table 3.

Carbon dioxide
concentration in
exhaust chimney

Maximum inlet

Firing rate {“C) exhaust

Test (kg/s} gases (V) temperature
A 96 x 1074 12.6 350
B 60 x 107¢ ], 350
C 6.3 x107% 8.8 350

Figures 7-9 show the comparison between the pre-
dicted and experimental temperatures for each of the
three tests A, B and C taken over a complete cycle.
The curves show the predicted and measured outlet
flue gas temperatures and top inner skin temperature
as functions of time. These three curves show that
predicted temperatures and measured tcmperatures
were within 109 of each other over most of the range.
The predictions for all the tests were similar in accuracy.
Measured and predicted outer surface temperatures
were also found to be in good agreement. However,
as the primary purpose of the model is to predict inner
liner temperatures, which govern condensation, this
comparison has not been shown.



Prediction of multilayer chimney liner temperatures

C
5 & B
1
\\

) §
¢ o A&
2 J \
2 k\
E‘ e} od "
F e
]
anld # x Measured top flue gos temperature :
» Predicted fop flue gas temperature ‘Qg
© Megasured top inner skin temperature
40| + Predicted top inner skin temperature
i | A L | 1 {
2%~ 3~ 8§ 12 16 20 24 28 32 36 40
Time, min
Fic. 7. Comparison of predicted and measured tempera-

tures—Test A. (Firing rate = 57.7 g/min)

b}
o
1

s e §
e I R)
e
o"’X’ *
o",(x

140 .tx'

.:x N
® o~ N \
3 » %
E
5 P W
g 100~ 4 MX .
£ h A r— S 0
5]
P

[+ ]
ie]
—

x Measured top flue gas temperoture
» Predicted top flue gas temperature
o Measured top inner skin temperature “+
+ Predicted top inner skin temperature

3

r'y
O

i | L | 1 | L
20 24 28 32 36 40

Time, min

[+]
IS
ol
©
&

F1G. 8. Comparison of predicted and measured tempera-
tures—Test B. (Firing rate = 36.0 g/min.)

/._——o-""—"—"’"

iy |
[ i o é:?’:'x \:\.
130p- I‘ \.

Yemperature,
3
¥

x Meusured top fiue gas temperature
» Predicted top fiue gas temperature
© Measured top inner skin tempergture
+ Predicted top inner skin temperature

N NIRRTV SUNEEN NUNTUU SUPUS SR | .
o 4 8 2 1 20 24 28 32

Time, min

F16.9. Comparison of predicted and measured tempera-
tures—Test C. (Firing rate = 37.6 g/min.)

Figure 6 shows a computer plot of a cycling test
for five consecutive cycles. This corresponds to test A
under cycling conditions. Its usefulness in predicting
the tendency to water and acid condensation can be
clearly seen by taking the water dewpoint temperature
as 45°C and the acid dewpoint temperature as 140°C.
Under these boiler cycling conditions, and with this
design of chimney, it can be seen that the chimpey
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suffers from water condensation for only 200s in the
first heating period. All the inner liner temperatures
are below the acid dewpoint at all times and extensive
acid condensation can be anticipated.

Concerning Figs. 7-9, an interesting observation is
that during the early part of the heating period, the
gradient of the measured values of inner skin tem-
peratures suddenly rises and falls again, whereas the
predicted gradients have a smooth slope. This could

Tan Aria ta lIntant hant affaste ac thic anhcarvatian aecenre
UC UUU LU JQILVEHL LIVAL VIIVAAD A0 1S UUSWE YRV Uveiil o

when the wall temperature is about 50-70°C. Thus it
might be suspected that of the heat passing from the
gas to the surface, a high proportion will cause the
water to change its state into gas and so the tempera-
ture of the metal will not rise so ’i&p"""’
This would not be predicted theoretically as no account
has been taken of the effect of condensation on the heat
transfer. This observation is not apparent in the cooling
cycle, because only air is passing through the chimney
and it contains only ambient moisture. Thus there is
negligible condensation in a cooling period by com-
parison with a heating period.

at that naint
au uiat point.

7. MODIFICATIONS FOR A PRACTICAL CHIMNEY

[PPSR | e B

A pracucai uliluuc_y' is sometimes of s(juare Cross
section with a cylindrical liner. To simplify the math-
ematical treatment, the actual cross section can be
replaced by an equivalent three layer circular section
(liner, insulation, outer layer), with the radii chosen so
that each layer contains the same amount of the
material as the actual chimney. Here the assumption
is that the mass of the layer (which governs its thermal
capacity) is more important than its surface area.

The outer face of a practical chimney may lose heat
by a considerable amount of radiation as well as con-
vection. The existing model can still be applied by
combining both the heat loss processes as a linearized
heat loss law for the outer face.

The ambient air temperature will be a function of
time alone and independent of chimney height for a
practical chimney.

1t must be emphasised that to predict the thermal
performance of any chimney design, a typical cycle
for mass flow rate and temperature at the base of the
chimney must be known in advance. A qualitative
indication of the variation with time of flow in a
practical domestic boiler/chimney system is shown in
Fig, 10.

7.10. Evaluation of t as a function of y and © when m(t)
is given in graphical or tabular form for any period
Since in practice the mass flow rate m(t) may be
given in graphical or tabular form (cf. Fig. 10), it is
convenient to tabulate ¢ as a function of y and  and
hence F,, F, and F; as functions of y and 1. These
calculations are performed prior to the beginning of
the finite difference solutions. In the finite difference
solution, the temperatures are calculated at all points
for T = At given starting values at = = 0. The procedure
is then repeated for T = 2Ar, 3Ar etc. Hence values of
t must be calculated for each value of y (=iAy where
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boiler {burner) chimney system.

0<igI)yatagiven t (=nAt where 0 < N1 The
procedure is as follows:

(i) Equation (16) can be written in the form:

z= A({t)— Alt—1tp)
where
1 tw
Al = —T--J Hi(w) dw.
rify Jw=0

(ii) A table of values of A(t) vs t can be drawn up
for t = nAt, 0<n< N;. This can be achieved by
numerical integration using the graphical or tabular
values of mi{f) vs t.

(iii) For one value of © = nAr,

ot At
t—tp = 5= 7 5
From the A(t) vs t table, the value of A(nAt/ff) can be
found by interpolation. For one value f§ of y = iAy,
z=iAy/z and since aff)= z+ A{t—1p), this gives a
value for A{r). From the table of A(t) vs ¢ the corre-
sponding value of ¢ can be found. Hence ¢ for the
chosen y. The calculation is repeated for all y values
in the mesh to give a table of values of t vs y for all ¥
values on the mesh for the fixed value of «.

(iv) Stage (iii) is repeated for all = values on the mesh.
A series of tables of f vs ¥ can thus be obtained for
all 7 values.

(v) Since t is now known in terms of y for all 7
values, F,, F, and F; can be calculated and tables
of values of F;, F, and F3 vs v for each value of ©
can be produced.

1t should be noted that after the first few values of
At in any time period, 1, will be very much less than 1.
and hence after the first few Az, t = 1/B.

Then
o) (°?
)

rz/B) (>
Faly, )= {--m s }
thus eliminating the need to obtain tabular values of
F,. F, and F; as in steps (i)~(v) for more than the
first few time steps.

Fx(}’af)ﬁl

Faly, t)== {

R. G. SippaLL and J. K. PEARSON

8. CONCLUSIONS

The mathematical model for prediction of tempera-
tures in a multilayer chimney under the unsteady state
conditions encountered with variable flue gas inlet con-
ditions and variable ambient temperature has been
successfully compared with measurements on an ox-
perimental chimney. For known acid and water dew-
point temperatures for the chimney gases, a realistic
forecast can be made of the time period for which any
part of the chimney liner is subject to acid and water
condensation. In consequence the model can be used
to aid the selection of chimney designs and the
identification of boiler operating conditions which will
minimize low temperature corrosion resulting from the
formation of condensates within the chimney.

The model should find wide application. particu-
larly in oil fired installations where acid and water
condensation can seriously limit the life of a chimney.

Following the present verification of the model i
is intended to utilize it for the production of design
curves for practical chimney/boiler systems which will
lead to minimum condensation.
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APPENDIX
Derivation of the Dimensionless Differential Equations
for the Case when the Inlet Mass Flow Rate Varies with Time
In equation (16) rp is defined as the time taken by the
fluid at height z and time t to travel from the chimnes
entrance to height z.

l w={
I { m{widw = glt, 1p) say. e
TF{Pg Jw=t~in

Suppose it is required to find 8G/ér and JG/0c given a
function F(z,1) = G(y, 7). Using equations (12) and (13
since § and ¢ are independent of f and z.

&G ——:[1(1—@{2)8(; G (r,, oG {\(i,

e o d — = — ﬂ —- + &
To find the partial derivatives of 1p the result

ét dz T
(q T "b(Y¥.z)
o Lf gix, Y, z)dx]

CY [ Jaty.z

b '\
=J v -dx+g(h, Y, z)

is used.

(53

h .
- gla, Yoo
€
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Differentiating (16) partially with respect to z and ¢ and  substituting for & from (17) reduces (6) to the form

using the above result, we have: o, 3 I m_(tﬂ“’-zu o - 20
o ‘Lm(()) {$;— @ r=r.1 (20}
atp 1 otp u(t) 4 _ 4
oz ui—tp) and B 1= wi—to)’ This is the dimensionless equation for the gas in the text.
' b b The differential equation for any solid layer is:
19/ 06
Hence 36,0 = a,-——-(r—’) for j=1,2,3. M)
0G u(t) oG (AL ror\ or
o Tu(t—tp) o1 ) Using result (A1) and putting
p=2 as)
and ri
oG oG B oG (A2) equation (1) becomes:
55:85_}’"[““-‘&]57 ;[ 1 0 (o, (19)
ot 'l mi) JRAR\ 4R

Using results (A1) and (A2), dividing through by 6;(0), and  where A; = a/a;. This is equation (19) in the text.

APPENDIX 2
Expression of the Boundary Conditions in Finite Difference Form

At the interface between the (j— Dth and jth solids (j = 2, 3) )

The relevant section of the grid is shown in Fig. 5(a). At the interface in the (j— 1)th layer, the finite difference equation
within the solid can be applied if the (j — 1)th solid is assumed to be on both sides.of the interface. The equation is from
[equation (29)]:

(1 +2yi“1)¢j‘l(Mj—1’ i+ 1)‘“?]—1[ ]QST'l(Mi“l"' 1,1, n+1)

1
4
2 +Mj-y)
1
a1 e i (M~ 1, iy n+ 1
Vi 1[ 2(l/lj—1+M;-1)]¢J (Mj_y —-Lin+1)
1

= (1=23- ) 1 (Mo, B W) 4y 1
( Pi-1)- (Mo, b4y, x[ 20,1+ M)

]¢}‘—1(Mj~1+1,i,ﬂ)

1
pieg] I— ol (M- — L0, A3
+7; l[ 2(‘1’;—1+Mj—x)]¢} 1My in) (A3)

where the temperatures marked with an asterisk are fictitious temperatures at the fictitious grid points in the extended
{j—Dth solid.
At the same interface in the jth solid (assuming solid j material on both sides of the interface) the equation is:

1 1
(1+2y)¢;0,i,n+1) —y,(l +2—%)¢j(1, i,n+ 1)—]!;(1 -—-2{—#:) H—1,i,n+1)

1 1
= (1-2y,)¢,0, i, n) +yj(1 +ﬂ;)d)i(l’ i, n) +"/,-(1 —Z[!;)tﬁ}‘(— Li,n). (A4)

The continuity conditions at the interface are:

08—,

¢;-1 = ¢;[equation (22)]  and IR

= (; %i;i [equation (23)].

The continuity of temperature conditions are:
(Mg in+ 1) = ¢;(0,i,n+1)
G- 1(Mj-y, i, ) = ¢;(0,i,n).

The continuity of flux condition can be written for (n+4)At as:
%{[(b}tl(Mj—l +1,in+1)~d;- (M., —1,i,n+1)] " [oF (M1 + L i, n) — (M — 1,1, n)]|
ZAj_lR ZAj_, R }
- y_j{[qﬁj(l, Ln+)=¢f(=Lin+1)] + [9,(L i m) = XL, i, n)] | (A3)
2 2A5R 2A;R jL

Elimination of the fictitious temperatures between (A3), (A4) and (A5}, followed by rearrangement, gives equation (32)
in Section 5.3.3.

At the gas/liner and outer layer/liner interfaces
The.relevant sections of the grid for the gas/liner interface and the outer layer/air interface are shown in Figs. 5(b) and

5(c) respectively. The final finite difference equations (33) and (34) are obtained in a similar manner by elimination of
the fictitious temperatures.
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CALCUL DES TEMPERATURES D'UNE CHEMINEE MULTICOUCHE
DANS DES CONDITIONS DE REGIME VARIABLE

Résumé— On présente un modele mathématique pour pridire la température en un pomt yuelcongue
d’une cheminée multicouche dans des conditions instationnaires avec une température dentrée et un
débit de gaz variables et aussi une température ambiante variable. Le modéle redonne de fagon salns-
faisante les températures mesurées sur une cheminée expérimentale a trois couches, # la fois dans los
périodes de chauffage et de refroidissement. En particulier. le modéle détermine correctement la période
de temps pendant laquelle une portion quelconque de la zone interne est au dessous de la température
du point de rosée acide des fumées. On peut réduire sensiblement la condensation de Tacide et de
Teau ainsi que la corrosion dans les cheminées en minimisant ce temps par des modifications dans
la conception d’une cheminée domestigue et des conditions opératoires sur la chaudiére.

DIE ERMITTLUNG DER WANDTEMPERATUREN EINES MEHRSCHICHTIGEN
KAMINS UNTER INSTATIONAREN BEDINGUNGEN

Zusammenfassung — Es wird ein mathematisches Modell vorgestellt, das die Berechnung der Tempera-
turen an jedem Punkt eines mehrschichtigen Kamins unter instationdren Bedingungen, wic sie bet
variablen Rauchgaseintrittstemperaturen und Rauchgasmengenstrémen, sowie variablen Umgebungs-
temperaturen anzutreffen sind, erlaubt. Die in einem dreischichtigen Versuchskamin iiber die Heiz- und
Kihlperioden gemessenen Temperaturen wurden mit Hilfe dieses Modells in befriedigender Weise
vorausberechnet. Insbesondere gibt das Modell korrekt die Zeitspanne, wihrend der die innere Ober-
flachentemperatur an jeder Stelle des Kamins unter den Saure- und Wassertaupunkttemperaturen des
Rauchgases liegt. Diese Zeit ldsst sich durch Modifikationen in Wohnhauskaminen und in den
Kesselbetriebsbedingungen zu einem Minimum machen, wodurch die Gefahr der Sdure- und Wasser-
kondensation und der damit verbundenen Kaminkorrosion erheblich verminderi wird.

PACYET TEMIIEPATYP MHOIOCHOMHOW OBIIUBKW TPYBLI
B CTALIMOHAPHBIX VCIOBMAX

Amsoramna — TlpencraBneHa MarTeMaTHYeCKas MOAENb, KOTOPYIO MOXKHO HCIOONL30BaTh I8 pac-
YeTa TeMrepatrypsi B Jx0GoM Todke MHOTOCIOMHOH TpyObf B HECCTAUMOHAPHBIX YCIOBMAX ¢ HEpe-
MEHHO# TeMIIEpaTypoi Ha BXOJE ¥ NepeMEHHBIM MACCOBBIM PACXOIOM Fa30B, a TakKe HEPEMEHHOH
TeMHOEPaTypoll okpyxatoiel cpeabl. Monens yIOBIETBOPUTENLHO TIPENCKA3BIBAET 3HAYCHHSA TEM-
nmepaTypel, H3MEpeHHbIE B TPEXCIIONHON SKCHEpUMEHTaNbHON TpyOe Kak B IEepHOIbl HATPEBaHMS,
TaK M NPH OXNaxcieHuH. B YacTHOCTH, ¢ NOMOIUBIO JaHHOH MOJENH MOXHO TOYHO ONpeNenuTh
HepHO BPEMEHH, B TEYEHHE KOTOPOTO Ha jitoGoM yYacTKe BHYTpeHHeH oOummBKu TpYOR! TEMOEPATYpa
TA30B HIKE TOYKH POCH U KHCHOTHI ¥ BOABI. YMCHBIIAS 3TOT MEPUOA IYTEM HEKOTOPHIX H3MeE-
HEHEN B KOHCTPYKHMH Tpy0, MCHONb3yeMbix B OBITOBBIX LEsiX, M M3MCHEHHH DXHMOB paboTsi
G0HiNEPOB, MOXHO 3HAYHTENBHO CHM3HTL KOHAEHCALHMIO KHMCJIOTHl M BOIBI, 8, CJIENOBATENBHO, H
KOppo3uio TpyOsl.



